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S E L E C T I N G  A P H A S E - D I A G R A M  A P P R O X I M A T I O N  AND A 

M O D E L  OF THE DISAPPEARANCE OF M A R T E N S I T E  

C R Y S T A L S  F O R  S H A P E  M E M O R Y  A L L O Y S *  

A. A. Movchan UDC 539.4 

A micromechanical model is used here to construct constitutive relations for the phase diagram of shape memory alloys. 
We propose an approximation of the phase diagram that, within the framework of the model, improves on known 

approximations in its description of forward and orientational transformations. We also propose another model to account for 
the disappearance of martensite crystals. These models can be used to describe normal and reverse manifestations of shape 

memory. 
1. Shape memory alloys (SMA) have mechanical properties that differ sharply from those of ordinary metallic materials 

[1, 2]. These differences are related to thermoelastic martensitic (phase) transformations that occur in the alloys with a change 

in temperature and (or) stress [3]. The transformations involve the nucleation (disappearance) and growth (contraction) of 

martensite crystals in an austenite phase. In light of this, a key element in describing the behavior of SMAs is approximation 

of the phase diagram, i.e. the dependence of the volume fraction of martensite on temperature and stress in the forward and 

reverse transformations. For constant stresses, the phase diagram has the form shown in Fig. 1. Here, M 1 and M 2 are the 

temperatures at which the forward reaction begins and ends, while A 1 and A 2 are the same for the reverse reaction. 

Functions approximating the sides of the phase diagram can be represented in the form 

q = f t (T,  M1, M2), q = f2(T, ,It, A2), (1.1) 

where the characteristic temperatures M1, M 2, A1, and A 2 generally depend on the acting stresses [1]. 
The following linear relations were used in [1] 

All - T A2 - T 
f : (T ,  M1,M2) - M1 - M2' fz(T, AL, A2) = As - A'---~" 

In [4], preference was given to the exponential functions 

f , ( T , M : , M 2 )  = 1 - 1 0 2 ~ ,  f : ( T , A , , A 2 )  = 1 0 : ~ .  

The authors of [5] used an approximation of the form 

:,( : ..,,, .,, > § A, ,]. 

(1.2) 

(1.3) 

(1.4) 

Here, we propose to use the following approximation: 

:,:.,.,,.,) _ -  

(1.5) 
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Approximation (1.2) does not describe the saturation process that occurs during the forward transformation as q 

approaches unity. This process is accounted for in the other approximations. The graphs of the dependence of  q on T for the 

forward and reverse transformations cannot be made to coincide by parallel displacement along the T axis if Eqs. (1.3) are 
used, although the experimental data in [1] indicates that this can be done. Equations (1.2), (1.4), and (1.5) are free of this 

problem. The dependence of q on T has a point of inflection according to (1.4) but not according to (1.5). The advantages of 

this or that approximation can ultimately be determined only by comparing it with empirical data. 
2. Constitutive equations for the phase transformations of SMAs are constructed in accordance with a micromechanical 

scheme [6-8] that entails modeling the simultaneous nucleation and growth of martensite crystals in an austenite matrix. We 

will assume that the macroscopic phase distortion is equal to the sum of the microscopic distortions Pij connected with the 

nucleation and growth of all martensite crystals present in a representative volume of  the material at a given moment. 

The growth of a martensite crystal is governed by the following equation in the forward and reverse transformation 

[8] 

dpij _ (2.1) 
dq apijo 

It can be shown [6-8] that, in this case, the determining equation for the deviator of phase distortion eij should have the form 

deij = Bij + aeij. 
dq 

(2.2) 

Here, aeij is the strain rate associated with the growth of martensite crystals, while Bij = vpi ~ is the strain rate associated with 

their nucleation; v is the nucleation rate, calculated from the parameter q; oi ~ is the microscopic strain, connected with the 

nucleation of a single crystal. For the forward transformation, in the simplest case we can take [8] 

B 0 = ctr~j (2.3) 

(aij is the deviator of  the acting stresses). Most of the well-known constitutive equations for the rate of  change in phase 

distortion in SMAs do not contain a term of the type aeij [1, 9-11], although the possibility of including it in the equation for 

the rate of  microscopic phase distortion was discussed in [12]. 

The rate of  nucleation and growth of  martensite crystals should decrease as q approaches unity. This effect is 

automatically accounted for by models (1.3-1.5) for the phase diagram. In the present case, the parameters a and c can be 

assumed to be constant: a = a o = const, c = c o = const. The model obtained for the forward transformation as a result of 

this assumption contains two parameters: a 0 and c 0. If we use linear phase-diagram approximation (1.2), then allowance can 

be made for the decrease in crystal nucleation and growth rate by taking a and c to be functions of the parameter q and having 

them approach zero as q approaches unity. For example: 

a = ao(1 - q)'*, c = co(1 - q)'*. 
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TABLE 1 

Material 

TN-1 

CuAIMnCo 

(1.2) (1.s) I (1.4) (1.5) 
S 

0,182 0,327 I 0,544 0,181 
0,0017 0,122 I 0,0673 0,0072 

As a result, one more material parameter n is added. The equation for the deviator of phase distortion in the forward 

transformation has the form 

d~ij t 
dq = (eoalj + ao~ij)(1 - q)n. (2.4) 

Here and in all subsequent formulas for the two-parameter model, we need to set n = 0. 

3. The most suitable of  phase-diagram approximations (1.2-1.5) can be chosen on the basis of the best description, by 

Eq. (2.4), of  experimental results on the development of strain in the forward and orientational transformations [12-15]. In the 

first case, we are talking about the increase in phase distortion in the SMA as it cools through the temperature interval (M t, 

M 2) under a constant stress. Integrating (2.4), we obtain the following with zero initial conditions 

2 Co (exp (n__~l ( 1 _  ( 1 -  q),~+,) ) _ 1), (3.1) 

where e i and a i are the intensities of  the stresses and strains. In order to obtain the dependence of  the intensity of  the phase 

distortion on temperature, we need to replace q with (1.1) in one of the approximations (1.2)-(1.5) being considered. 

To fred the parameters of  the model, we used experimental data on the forward transformation for titanium nickelide 

TN-1 [15] and a CuAIMnCo alloy [13]. We chose a series of points Tj in the temperature interval (M 1, M 2) (j = 1, 2 . . . . .  

k, k = 12, M t = 325 K, M 2 = 175 K for TN-1 and k = 9, M 1 = 340 K, M 2 = 316 K for CuAIMnCo). The values of the 

parameters were sought by minimizing the standard deviation S of the intensity of  phase distortion e i, calculated from (3. I), 
relative to the experimental data e': 

k 
min ~ I ei(TJ) -s ' (TJ)]  e 

aO,eO,n5=l [ -~7(--~j) j = S. 

We used the coordinate descent method to find the parameters. The quality of the approximation can be judged from 

the minimum value of  S attained. Values of S for the different phase-diagram approximations are shown in Table I. 

In accordance with Table 1, in most cases the three-parameter model (the first column of  the table) gives lower values 

of S than two-parameter models (1.3), (1.4), and (1.5). Surprisingly, the two-parameter models and proposed phase-diagram 

approximation (1.5) give the same value of S as the three-parameter model with the linear phase diagram in the case of alloy 

TN-1. It must be noted that the slope of the minimized function is very small when the three-parameter model is used (the small 

change being related to the substantial change in the sought parameters), which makes a stable determination very difficult. 

The two-parameter models do not have this problem. According to Table 1, proposed approximation (1.5) yields significantly 
smaller errors than the other curvilinear approximations (1.3) and (1.4). 

4. The experimental data on the orientational transformation [1, 12-15] differs from the experimental results on the 

forward transformation for a constant stress in the fact that the applied stress is removed at a certain intermediate value of 

temperature T = T 0, M 2 < T O < M 1 and the SMA cools from T = T O to T = M 2 without stresses. Experiments [1, 9, 12-15] 
show that the phase diagram continues to develop after the stresses are removed, albeit at a lower rate than when the forward 

transformation is continued (and the applied stress remains). For many well-known models (see [1, 6], for example), the rate 

of phase distortion in the forward transformation is assumed to be proportional to the deviator of  the applied stress. Such an 

assumption does not permit even a qualitatively correct description of orientational transformation (at ~ij = 0, deij/dq = 0). 

In proposed model (2.4), the value of Jij is proportional only to the rate of change of that part of the phase distoi-tion connected 

with the nucleation of  martensite crystals. The growth of nucleated crystals can also occur by (2.1) at zero stresses. Thus, the 

proposed model offers a qualitatively correct description of the increase in strain in the direction of the previously applied stress 
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TABLE 2 

Material 

TN-1 

CuAIMnCo 

(1.2) (1.3) (1.s) 

s 

0,3085 0,538 0,0888 

0,0300 0,437 0,0059 

TABLE 3 

Material ao 

TN-1 0,718 

CuAIMnCo 2,25"/ 

co.104 1/MPa 

2,43 

1,51"/ 

at a rate which is lower than if the stress were continue to act. The rate is lower because the component of strain rate associated 

with crystal nucleation disappears. 
The quantitative agreement of these conclusions with experimental results was checked using curves describing the 

orientational transformation of alloy TN-1 [15] (five curves for five temperatures To) and the CuAIMnCo alloy [10] (three 

curves). The calculation was performed by means of the formula 

2 co [ ao 
e i =  ~o'i--~exp~ ao ( n @ l  ( 1 - ( 1 - q ) n + l ) ) - e x p ( ~ - ' ~ ( 1 - q ~  n + l - ( 1 - q ) n + ' ) ) ,  

(4.1) 

which was obtained by integrating Eq. (2.4) under the appropriate conditions. The value of q0 is calculated through T O with 

the use of  the corresponding phase-diagram approximation. We used all of the approximations employed earlier except for (1.4) 

to obtain curves of the orientational transformation. Approximation (1.4) was not used because a value less than zero was found 

for the parameter a when this model was used to construct the curve for the forward transformation, and a negative value would 

have resulted in a qualitatively incorrect description of the orientational transformation. 
When calculations were performed with Eq. (4.1), we used values obtained from the curve for the forward 

transformation as c o and a 0 for each material. In other words, we used values obtained in an independent experiment. To 

compare theoretical and experimental values of strain for each orientational transformation curve within the interval of 

temperatures T0-T 2 corresponding to the beginning and end of the transformation, we chose several (from three to seven, 

depending on the size of  the interval) points T i at which to determine experimental and theoretical values of strain. We then 

calculated the sum of the squares of their differences for all points on all of the curves for the given material. The resulting 

values of standard deviation S are shown in Table 2. 

According to Table 2, the two-parameter model with phase-diagram approximation (1.5) is considerably more accurate 

than not only the two-parameter model with exponential approximation (1.3), but also the three-parameter model with linear 

approximation (1.2). 

These results illustrate the advantages of proposed approximation (1.5) over the other approximations. Table 3 shows 

values of  the parameters of  a two-parameter model employing Eq. (1.5) for the materials discussed here. 

The lines in Fig. 2 show the dependence of strain on temperature for titanium nickelide in the forward transformation 

(curve I, a = 110 MPa) and the orientational transformation with the same stress in the first stage of the cooling process 

(curves 2-6, corresponding to different temperatures T O at which the stresses were relieved). The curves were calculated from 

the proposed model with parameters (Table 3) obtained on the basis just of experimental data for the forward transformation. 

The points represent experimental results obtained for the same material [15] in tests involving the orientational transformation. 
Similar data is shown in Fig. 3 for the CuAIMnCo alloy [10] (curve 1 is for the forward transformation with a shear stress 

r = 10.8 MPa, while curves 2-4 are for the orientational transformation with the same r in the first stage and different values 

of To). The results demonstrate the possibility of describing empirical data with the model identified in independent 
experiments. We will henceforth examine only this model. 

5. If the heating of a material is continued through the temperature interval (A 1, A2) after the forward transformation 

at a constant stress, the reverse transformation of martensite into austenite will take place and the strain acquired in the forward 

transformation will be removed (shape memory effect [1]). The martensite crystals nucleated previously will be reduced to mini- 
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mal dimensions and eventually disappear during the reverse transformation. If the reduction in the size of each crystal obeys 

the same law (2.1) as governs crystal growth, then the model that describes the disappearance of the crystal should be different 

from the model that describes its growth. There should be a difference because the orientation of the nucleated crystals is 

determined by the acting stress in the forward transformation, while the relatively small stress in the reverse transformation 

does not significantly affect the process. We further propose that the rate of disappearance of martensite crystals during the 

reverse transformation is determined only by the history of their nucleation and growth. 

This relationship can be viewed from one of two extremes. From one viewpoint, the rate of disappearance of martensite 

crystals during the given stage of the forward transformation is constant. The value of this constant tensor can be found on the 

basis of the fact that the initial phase diagram vanishes after completion of the reverse transformation; integrating Eq. (2.4) 

for the reverse transformation, we find from the c o n d i t i o n  eij(0 ) = 0 that 

uor 
Bij = 1 - e x p  ( - a o q l )  " ( 5 . 1 )  

1 
Here, eij and ql are values of the deviator of phase distortion and the parameter of the process q at the point where the given 
stage of the reverse transformation begins. 

The alternative point of view is that 

B~j(q)l~<o = B~j(q)l~>o, (5.2) 

i.e., the rate of disappearance of crystals during the reverse transformation is equal to the rate of their nucleation during the 

previous stage of the forward transformation at the point corresponding to the given value of q. These hypotheses give the same 
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result and correctly describe the experimental data in the simplest case of a reverse transformation after a forward 

transformation under a constant stress. 

Let us now examine a more complicated case - -  reverse shape memory [1, 16-18]. One variant of this phenomenon 

consists of the following [1]. A specimen undergoes the forward transformation under the influence of a shear stress r as it 

cools from M 1 to the temperature T O (M 2 < T O < M1). This leads to the phase distortion 3'1. The specimen then cools further 

under the influence of  the shear stress - r  from T = T O to T = T 1 > M 2. The phase distortion disappears as a result. The 

stress r and temperatures T O and T 1 are chosen so that the phase distortion is zero at the end of the second stage of the forward 

transformation. Deformation changes nonmonotonically with further monotonic heating of the unstressed specimen. The material 

can behave in one of two ways [1], but we will examine the variant that corresponds to the principle of space - t ime  

heterogeneity [16, 17]. In this case, monotonic heating from the temperature A 1 is initially accompanied by an increase in strain 

3' to the maximum value 3"2 at T = T 1 (the signs of "/2 and 3'1 coincide); with further heating, 3" decreases to a value close to 

zero at T = A 2. Although the dependence of 3" on T on the heating section is qualitatively the same as on the cooling section, 

the maximum strain in the reverse shape memory 3'2 is substantially smaller than the maximum strain during the forward 

transformation (3" - 0.253" l for titanium nickelide, according to [1, 16]). 

It is easy to see that when model (5.1) is used in experiments set up to test reverse shape memory, the rate of 

disappearance of martensite crystals during the reverse transformation will be zero; thus, the strain 3' will also be identically 

zero, i.e. this model does not describe reverse shape memory. 

Thus, the proposition that the rate of disappearance of martensite crystals is constant does not conform to the character 

of the recovery which occurs after the reverse transformation. At the same time, it is readily seen that, in accordance with Eq. 

(5.2), the graph of  the dependence of 3' on T during heating exactly (qualitatively and quantitatively) repeats the graph of the 

dependence of 3" on T during the forward transformation (albeit in a different temperature interval); here, 3'2 = 3"1, which does 

not agree with the experimental data. Thus, adopting Proposition (5.2) causes shape memory to become of an "excessively 

reverse" nature. Adopting the proposition that Bij is constant generally precludes reversal during monotonic heating. It is clear 

that reverse shape memory can be described by formulating a compromise between these two hypotheses. For example, we 

could adopt the following as our model to describe the disappearance of martensite crystals during heating: 

O.o~lj 
Bijl~<o = AB~j[#> o + (1 - A) 1 - exp ( - a o q l )  " (5.3) 

It is easily seen that the value of Bij obtained from (5.3) in the case of heating after occurrence of the forward 

transformation under a constant stress is independent of k and is equal to the rate of disappearance of martensite crystals in 

each of the constituent models. Thus, the combination model correctly describes a simple experiment involving the reverse 

transformation - -  as does each of the simple models comprising it. 
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an experiment studying reverse shape memory, 41 = 0 in (5.3) and the rate of disappearance of martensite crystals In 

will be determined solely by the first term in the right side of (5.3). As a result, the dependence of 3' on T for the reverse 

transformation qualitatively repeats the analogous graph for the forward transformation on a smaller scale (as seen in 

experiments) determined by the coefficient X. The value of this material parameter can be found from the formula X = 3"2/.,/1 . 
Figure 4 shows graphs of the temperature dependence o f f  = ao3"/(2Cor)calculated by means of Eqs. (1.5), (2.2)-(2.3), 

and (5.3) in a reverse shape memory experiment for an SMA with a o = 0.718 (as for the above-examined titanium nickelide), 

M 1 = 250 K, M 2 = 200 K, A 1 = 240 K, and A 2 = 290 K. Curve 1 corresponds to the forward transformation with a constant 
shear stress r, curve 2 corresponds to the same transformation with a shear stress - r ,  and curve 3 corresponds to the reverse 

transformation in the unstressed state. 

The proposed model makes it possible to describe an alternative form of behavior of a material exhibiting reverse shape 
memory [1]. Here, martensite crystals nucleated at the beginning (as opposed to the end) of the forward transformation 

disappear first during the reverse transformation. The quantities 3"1 and 3'2 thus have opposite signs. For the situation just 
described to be realized, it is sufficient that ct be negative. The change seen in the behavior of the material with a change in 

T 1 at the end of the forward transformation [1] and the reduction in 3'2/3'1 seen experimentally with a decrease in T O [19] can 
be described by taking k to be a decreasing function of q. 

Here, we have used a simple variant of an approach that accounts for the simultaneous nucleation and growth of 

martensite crystals. The scheme can be generalized to allow for several structural levels of deformation [20-22]. 
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